Stay updated daily with trending AI research
7 days free trialPick your own topicsAutomated AI summaries

Mixture of Nested Experts: Adaptive Processing of Visual Tokens

Mixture of Nested Experts
Vision Transformers
computer vision
conditional computation
inference efficiency
arXiv:2407.19985 - [arXivPDF]
31
278
Mixture of Nested Experts: Adaptive Processing of Visual Tokens
Abstract
The visual medium (images and videos) naturally contains a large amount of information redundancy, thereby providing a great opportunity for leveraging efficiency in processing. While Vision Transformer (ViT) based models scale effectively to large data regimes, they fail to capitalize on this inherent redundancy, leading to higher computational costs. Mixture of Experts (MoE) networks demonstrate scalability while maintaining same inference-time costs, but they come with a larger parameter footprint. We present Mixture of Nested Experts (MoNE), which utilizes a nested structure for experts, wherein individual experts fall on an increasing compute-accuracy curve. Given a compute budget, MoNE learns to dynamically choose tokens in a priority order, and thus redundant tokens are processed through cheaper nested experts. Using this framework, we achieve equivalent performance as the baseline models, while reducing inference time compute by over two-fold. We validate our approach on standard image and video datasets - ImageNet-21K, Kinetics400, and Something-Something-v2. We further highlight MoNE's adaptability by showcasing its ability to maintain strong performance across different inference-time compute budgets on videos, using only a single trained model.
31
278
Sign up to continue reading AI summary
Stay updated on the latest trending research with our newsletter. Never miss a release date!
Sign Up
© 2025 Adaptive Plus Inc.1216 Broadway, Suite 213,575 Market Str, San Francisco, CA